Copied to
clipboard

G = C2xC23.24D4order 128 = 27

Direct product of C2 and C23.24D4

direct product, p-group, metabelian, nilpotent (class 3), monomial

Aliases: C2xC23.24D4, C24.139D4, (C23xC8):6C2, C4.3(C23xC4), C4:C4.340C23, (C2xC8).467C23, (C2xC4).173C24, (C22xC8):63C22, D4.17(C22xC4), C4.138(C22xD4), (C22xC4).819D4, C23.376(C2xD4), Q8.17(C22xC4), D4:C4:97C22, Q8:C4:99C22, (C2xD4).358C23, C22.81(C4oD8), C4o(C23.24D4), (C2xQ8).331C23, C42:C2:73C22, (C23xC4).690C22, C22.123(C22xD4), C23.130(C22:C4), (C22xC4).1497C23, (C22xD4).551C22, (C22xQ8).455C22, C4o(C2xD4:C4), C4o(C2xQ8:C4), C2.1(C2xC4oD8), (C2xC4oD4):18C4, C4oD4:12(C2xC4), (C2xC4)o2(D4:C4), (C2xD4:C4):58C2, (C2xC4)o2(Q8:C4), (C2xQ8:C4):59C2, (C2xD4).226(C2xC4), (C2xC4).1563(C2xD4), C4.121(C2xC22:C4), (C2xQ8).204(C2xC4), (C2xC42:C2):40C2, (C22xC4)o(D4:C4), (C2xC4:C4).899C22, (C2xC4).458(C22xC4), (C22xC4).415(C2xC4), (C22xC4)o(Q8:C4), (C22xC4oD4).18C2, C22.20(C2xC22:C4), C2.35(C22xC22:C4), (C2xC4).284(C22:C4), (C2xC4oD4).272C22, (C2xC4)o(C23.24D4), (C2xC4)o(C2xD4:C4), (C2xC4)o(C2xQ8:C4), (C22xC4)o(C2xD4:C4), (C22xC4)o(C2xQ8:C4), SmallGroup(128,1624)

Series: Derived Chief Lower central Upper central Jennings

C1C4 — C2xC23.24D4
C1C2C22C2xC4C22xC4C23xC4C22xC4oD4 — C2xC23.24D4
C1C2C4 — C2xC23.24D4
C1C22xC4C23xC4 — C2xC23.24D4
C1C2C2C2xC4 — C2xC23.24D4

Generators and relations for C2xC23.24D4
 G = < a,b,c,d,e,f | a2=b2=c2=d2=1, e4=d, f2=c, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, fbf-1=bd=db, be=eb, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef-1=cde3 >

Subgroups: 668 in 396 conjugacy classes, 180 normal (18 characteristic)
C1, C2, C2, C2, C4, C4, C4, C22, C22, C22, C8, C2xC4, C2xC4, C2xC4, D4, D4, Q8, Q8, C23, C23, C23, C42, C22:C4, C4:C4, C4:C4, C2xC8, C2xC8, C22xC4, C22xC4, C22xC4, C2xD4, C2xD4, C2xQ8, C2xQ8, C4oD4, C4oD4, C24, C24, D4:C4, Q8:C4, C2xC42, C2xC22:C4, C2xC4:C4, C42:C2, C42:C2, C22xC8, C22xC8, C23xC4, C23xC4, C22xD4, C22xD4, C22xQ8, C2xC4oD4, C2xC4oD4, C2xD4:C4, C2xQ8:C4, C23.24D4, C2xC42:C2, C23xC8, C22xC4oD4, C2xC23.24D4
Quotients: C1, C2, C4, C22, C2xC4, D4, C23, C22:C4, C22xC4, C2xD4, C24, C2xC22:C4, C4oD8, C23xC4, C22xD4, C23.24D4, C22xC22:C4, C2xC4oD8, C2xC23.24D4

Smallest permutation representation of C2xC23.24D4
On 64 points
Generators in S64
(1 15)(2 16)(3 9)(4 10)(5 11)(6 12)(7 13)(8 14)(17 48)(18 41)(19 42)(20 43)(21 44)(22 45)(23 46)(24 47)(25 62)(26 63)(27 64)(28 57)(29 58)(30 59)(31 60)(32 61)(33 49)(34 50)(35 51)(36 52)(37 53)(38 54)(39 55)(40 56)
(1 22)(2 23)(3 24)(4 17)(5 18)(6 19)(7 20)(8 21)(9 47)(10 48)(11 41)(12 42)(13 43)(14 44)(15 45)(16 46)(25 56)(26 49)(27 50)(28 51)(29 52)(30 53)(31 54)(32 55)(33 63)(34 64)(35 57)(36 58)(37 59)(38 60)(39 61)(40 62)
(1 35)(2 36)(3 37)(4 38)(5 39)(6 40)(7 33)(8 34)(9 53)(10 54)(11 55)(12 56)(13 49)(14 50)(15 51)(16 52)(17 60)(18 61)(19 62)(20 63)(21 64)(22 57)(23 58)(24 59)(25 42)(26 43)(27 44)(28 45)(29 46)(30 47)(31 48)(32 41)
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)(17 21)(18 22)(19 23)(20 24)(25 29)(26 30)(27 31)(28 32)(33 37)(34 38)(35 39)(36 40)(41 45)(42 46)(43 47)(44 48)(49 53)(50 54)(51 55)(52 56)(57 61)(58 62)(59 63)(60 64)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 34 35 8)(2 7 36 33)(3 40 37 6)(4 5 38 39)(9 56 53 12)(10 11 54 55)(13 52 49 16)(14 15 50 51)(17 22 60 57)(18 64 61 21)(19 20 62 63)(23 24 58 59)(25 26 42 43)(27 32 44 41)(28 48 45 31)(29 30 46 47)

G:=sub<Sym(64)| (1,15)(2,16)(3,9)(4,10)(5,11)(6,12)(7,13)(8,14)(17,48)(18,41)(19,42)(20,43)(21,44)(22,45)(23,46)(24,47)(25,62)(26,63)(27,64)(28,57)(29,58)(30,59)(31,60)(32,61)(33,49)(34,50)(35,51)(36,52)(37,53)(38,54)(39,55)(40,56), (1,22)(2,23)(3,24)(4,17)(5,18)(6,19)(7,20)(8,21)(9,47)(10,48)(11,41)(12,42)(13,43)(14,44)(15,45)(16,46)(25,56)(26,49)(27,50)(28,51)(29,52)(30,53)(31,54)(32,55)(33,63)(34,64)(35,57)(36,58)(37,59)(38,60)(39,61)(40,62), (1,35)(2,36)(3,37)(4,38)(5,39)(6,40)(7,33)(8,34)(9,53)(10,54)(11,55)(12,56)(13,49)(14,50)(15,51)(16,52)(17,60)(18,61)(19,62)(20,63)(21,64)(22,57)(23,58)(24,59)(25,42)(26,43)(27,44)(28,45)(29,46)(30,47)(31,48)(32,41), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)(41,45)(42,46)(43,47)(44,48)(49,53)(50,54)(51,55)(52,56)(57,61)(58,62)(59,63)(60,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,34,35,8)(2,7,36,33)(3,40,37,6)(4,5,38,39)(9,56,53,12)(10,11,54,55)(13,52,49,16)(14,15,50,51)(17,22,60,57)(18,64,61,21)(19,20,62,63)(23,24,58,59)(25,26,42,43)(27,32,44,41)(28,48,45,31)(29,30,46,47)>;

G:=Group( (1,15)(2,16)(3,9)(4,10)(5,11)(6,12)(7,13)(8,14)(17,48)(18,41)(19,42)(20,43)(21,44)(22,45)(23,46)(24,47)(25,62)(26,63)(27,64)(28,57)(29,58)(30,59)(31,60)(32,61)(33,49)(34,50)(35,51)(36,52)(37,53)(38,54)(39,55)(40,56), (1,22)(2,23)(3,24)(4,17)(5,18)(6,19)(7,20)(8,21)(9,47)(10,48)(11,41)(12,42)(13,43)(14,44)(15,45)(16,46)(25,56)(26,49)(27,50)(28,51)(29,52)(30,53)(31,54)(32,55)(33,63)(34,64)(35,57)(36,58)(37,59)(38,60)(39,61)(40,62), (1,35)(2,36)(3,37)(4,38)(5,39)(6,40)(7,33)(8,34)(9,53)(10,54)(11,55)(12,56)(13,49)(14,50)(15,51)(16,52)(17,60)(18,61)(19,62)(20,63)(21,64)(22,57)(23,58)(24,59)(25,42)(26,43)(27,44)(28,45)(29,46)(30,47)(31,48)(32,41), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)(41,45)(42,46)(43,47)(44,48)(49,53)(50,54)(51,55)(52,56)(57,61)(58,62)(59,63)(60,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,34,35,8)(2,7,36,33)(3,40,37,6)(4,5,38,39)(9,56,53,12)(10,11,54,55)(13,52,49,16)(14,15,50,51)(17,22,60,57)(18,64,61,21)(19,20,62,63)(23,24,58,59)(25,26,42,43)(27,32,44,41)(28,48,45,31)(29,30,46,47) );

G=PermutationGroup([[(1,15),(2,16),(3,9),(4,10),(5,11),(6,12),(7,13),(8,14),(17,48),(18,41),(19,42),(20,43),(21,44),(22,45),(23,46),(24,47),(25,62),(26,63),(27,64),(28,57),(29,58),(30,59),(31,60),(32,61),(33,49),(34,50),(35,51),(36,52),(37,53),(38,54),(39,55),(40,56)], [(1,22),(2,23),(3,24),(4,17),(5,18),(6,19),(7,20),(8,21),(9,47),(10,48),(11,41),(12,42),(13,43),(14,44),(15,45),(16,46),(25,56),(26,49),(27,50),(28,51),(29,52),(30,53),(31,54),(32,55),(33,63),(34,64),(35,57),(36,58),(37,59),(38,60),(39,61),(40,62)], [(1,35),(2,36),(3,37),(4,38),(5,39),(6,40),(7,33),(8,34),(9,53),(10,54),(11,55),(12,56),(13,49),(14,50),(15,51),(16,52),(17,60),(18,61),(19,62),(20,63),(21,64),(22,57),(23,58),(24,59),(25,42),(26,43),(27,44),(28,45),(29,46),(30,47),(31,48),(32,41)], [(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16),(17,21),(18,22),(19,23),(20,24),(25,29),(26,30),(27,31),(28,32),(33,37),(34,38),(35,39),(36,40),(41,45),(42,46),(43,47),(44,48),(49,53),(50,54),(51,55),(52,56),(57,61),(58,62),(59,63),(60,64)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,34,35,8),(2,7,36,33),(3,40,37,6),(4,5,38,39),(9,56,53,12),(10,11,54,55),(13,52,49,16),(14,15,50,51),(17,22,60,57),(18,64,61,21),(19,20,62,63),(23,24,58,59),(25,26,42,43),(27,32,44,41),(28,48,45,31),(29,30,46,47)]])

56 conjugacy classes

class 1 2A···2G2H2I2J2K2L2M2N2O4A···4H4I4J4K4L4M···4X8A···8P
order12···2222222224···444444···48···8
size11···1222244441···122224···42···2

56 irreducible representations

dim11111111222
type+++++++++
imageC1C2C2C2C2C2C2C4D4D4C4oD8
kernelC2xC23.24D4C2xD4:C4C2xQ8:C4C23.24D4C2xC42:C2C23xC8C22xC4oD4C2xC4oD4C22xC4C24C22
# reps1228111167116

Matrix representation of C2xC23.24D4 in GL6(F17)

100000
010000
0016000
0001600
0000160
0000016
,
1600000
0160000
001000
000100
000004
0000130
,
1600000
0160000
001000
000100
000010
000001
,
100000
010000
001000
000100
0000160
0000016
,
0160000
1600000
0001600
001000
0000143
00001414
,
0160000
100000
0001600
0016000
0000143
000033

G:=sub<GL(6,GF(17))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,13,0,0,0,0,4,0],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[0,16,0,0,0,0,16,0,0,0,0,0,0,0,0,1,0,0,0,0,16,0,0,0,0,0,0,0,14,14,0,0,0,0,3,14],[0,1,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,16,0,0,0,0,0,0,0,14,3,0,0,0,0,3,3] >;

C2xC23.24D4 in GAP, Magma, Sage, TeX

C_2\times C_2^3._{24}D_4
% in TeX

G:=Group("C2xC2^3.24D4");
// GroupNames label

G:=SmallGroup(128,1624);
// by ID

G=gap.SmallGroup(128,1624);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,-2,224,253,352,2804,1411,172]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=1,e^4=d,f^2=c,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,f*b*f^-1=b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=c*d*e^3>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<